

Courses » Industrial Instrumentation

Announcements

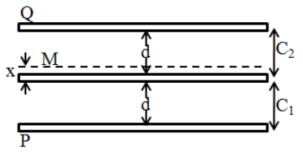
Course

Forum

Progress

Mentor

Unit 7 - Week 6


Course outline How to access the portal Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Lecture 15: LVDT Lecture 16: Capacitance Transducers Ouiz: Week 6 assignment on LVDT and Capacitance transducers ○ Week 6: Assignment Solution Week 7 Week 8 Week 9 Week 10 Week 11

Week 12

Week 6 assignment on LVDT and Capacitance transducers

1) 2 points

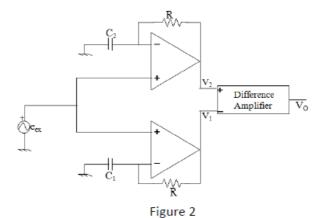
A differential parallel plate capacitive arrangement, where distance between the plate varies, is arranged in a Wheatstone bridge configuration as shown in Fig. 1(a) and 1(b C_1 is the capacitance between plates P and M and C_2 is the capacitance between plate Q and M. The relative permittivity of the medium is 2.5. Common area between the plates is 1 cm². Nominal distance between the plates is d = 1 cm. If x = 0.1 cm, Fin output voltage e_0 if 2 V peak-to-peak sinusoidal signal (e_{ex}) of 2.5 kHz excitation is used

2 V pp + e_{ex} V₁ - e₀ + C₂

R - e₀ + C₁

Figure 1: (a) differential capacitive sensor

(b) Bridge circuit for differential capacit arrangement


- a) 1 V peak-to-peak
- b) 0.1 V peak-to-peak
- o) 0.05 V peak-to-peak
- d) 2 V peak-to-peak

Accepted Answers:

b) 0.1 V peak-to-peak

2) 2 points

A differential capacitive arrangement, as in Figure 1(a), is used with the signal conditioning circuit, in Figure 2, to obtain output voltage V_0 . If maximum non-linearity of 1 % can be tolerated in output V_0 , then find the largest ratio of $\frac{x}{d}$.

- a) 0.01
- b) 0.05
- o c) 0.1
- Od) None of these

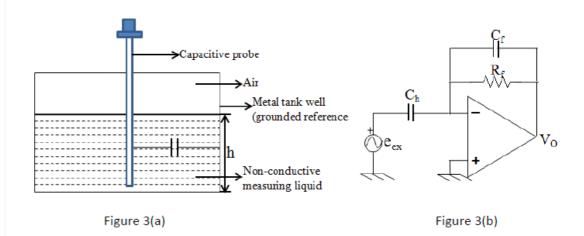
Accepted Answers:

c) 0.1

2 points

Find the sensitivity (assuming linear input-output relationship) of V_0 with-respect-to x from the circuit in Figure 2; given V_{ex} = 2V rms at 10 kHz, R = 10 k Ω , d = 1 cm. (Vacuum permittivity = $8.85 \times 10^{-12} \, F/m$)

- a) 0.056 V/m
- b) 0.112 V/m
- o) 5.6 V/m
- d) 11.2 V/m


Accepted Answers:

a) 0.056 V/m

4) 4 points

shown in Figure 3(a). Capacitance (C_h) between the probe and tank well, in Figure 3(a), is given by, $C_h = a + b \times h$; where, 'a' and 'b' are constants for a particular measuring liquid medium. If a 10V peak-to-peak, 10 kHz sinusoidal excitation signal is used as e_{ex} , then which of the following options is the best choice for R_f , C_f (assuming C_h varies in the range 200 pf to 800 pf).

The following circuit, in Figure 3(b), is used with the capacitive level measurement system

(<u>Hint:</u> Obtain the expression for V_0 in Laplace domain. Then find which of the following options is the most suitable for expressing V_0/e_{ex} as only a function of capacitances.

- \bigcirc a) $R_f = 10 \text{ k}\Omega$, $C_f = 1 \text{ nF}$
- \odot c) R_f = 100 k Ω , C_f = 470 pF
- \bigcirc d) $R_f = 220 \text{ k}\Omega$, $C_f = 100 \text{ pF}$

Accepted Answers:

b)
$$R_f = 100 \text{ k}\Omega$$
, $C_f = 10 \text{ nF}$

5) 2 points

Answer questions 5 to 9 based on Figure 4

A LVDT is to be designed with the following specifications (Refer to Figure 4):

Range of operation: ± 10 mm; Maximum frequency of displacement: 1 kHz; Supply voltage: 5 rms; maximum non-linearity: 1 %; wire used for windings: 19 SWG (wire diameter: 1.016 mm)

There are 1 primary and 2 secondary windings of inner diameter di and outer diamet

$$\label{eq:done_obj} \text{d}_{\text{O}}. \text{ Output voltage is given by, } e_{\text{O}} = e_{\text{I}} - e_{\text{I}} = \omega I_{\text{p}} \left[\frac{4\pi N_{\text{p}} N_{\text{S}} \mu_{\text{o}} L_{\text{p}} \times x}{3 sin \left(\frac{d_{\text{o}}}{d_{\text{i}}} \right)} \left(1 - \frac{x^2}{2 L_{\text{p}}^2} \right) \right].$$

Where, x – displacement of the core from null position; ω – frequency of excitatic signal; L_P – current in primary winding; N_P , N_S – number of turns in primary and seconda windings; μ_0 – permeability of free space ($4\pi \times 10^{-7}$ H/m).

It is also given,
$$\frac{d_i}{L_a}\!\cong\!0.1; \frac{d_o}{d_i}\!=\!4;\, L_a=\!3L_p;\, L_g<\!\!<\!L_p\,.$$

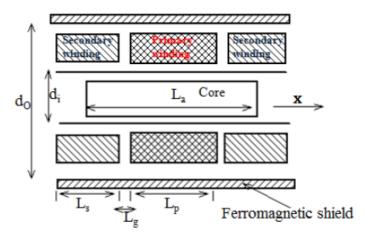


Figure 4

Find the following parameters:-

5. Length (LP) of the primary

(Hint: Observe the expression of eo above and given maximum non-linearity)

- a) 500 mm
- b) 22.36 mm
- c) 44.72 mm
- d) 70.7 mm

Accepted Answers:

d) 70.7 mm

6) 2 points

Length (L_s) of each of the secondary

(Hint: Find expression for L₅ from different length parameters (i.e.,La, Lp and x) given in Figure 4

- a) 8 mm
- b) 70.7 mm
- o) 80.7 mm
- (a) 212.1 mm

Accepted Answers:

c) 80.7 mm

7) Length (L_a) of the core.

2 points

- a) 67.08 mm
- b) 134.16
- o) 212.1 mm
- d) 500 mm

Accepted Answers:

c) 212.1 mm

⁸⁾ Inner and outer diameter (d_i and d_0) of the secondary.

2 points

- a) 21.21 mm, 84.84 mm
- o b) 13.42 mm, 53.68 mm
- o) 26.84 mm, 107.36
- d) None of these

Accepted Answers:

a) 21.21 mm, 84.84 mm

9) 4 points

Number of turns (NP and NS) of primary and secondary respectively.

(Hint: N_p = (number of layers of winding in primary)×(number of turns in each layer). No. o layers depend on d_0 , d_i and wire diameter. No. of turns in each layer depends on length o primary/secondary.)

- a) 2449, 2139
- b) 2139, 2449
- o) 2319, 2944
- d) 2449, 2449

Accepted Answers:

b) 2139, 2449

10) 3 points

Assume the following parameter-values for an LVDT (Refer to Figure 4):

 L_p = 80 mm, L_s = 100 mm, $\frac{d_o}{d_i}$ = 4, N_P = 2000 and N_S = 2500 (meanings of the notations are sam

as in the previous problem)

Using the values these parameters, find out e_0 for displacement of core x = 5 mm, given $I_P = mA$ peak current at 10 kHz frequency.

Permeability of free space (μ_O) = $4\pi \times 10^{-7}$ H/m (Ignore sign of output, if any)

- a) 4.36 V peak
- b) 54.64 V peak
- c) 5.46 V peak
- d) 43.6 V peak

Accepted Answers:

a) 4.36 V peak

Previous Page

End

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs - In association with

G+

Funded by

A project of

NASSCOM[®]

Government of India Ministry of Human Resource Development